2021年度 人工知能学会全国大会(第35回)

講演情報

国際セッション

国際セッション(Regular) » ER-2 Machine learning

[2N4-IS-2c] Machine learning (3/5)

2021年6月9日(水) 15:20 〜 17:00 N会場 (IS会場)

Chair: Hiroki Shibata (Tokyo Metropolitan University)

16:00 〜 16:20

[2N4-IS-2c-03] Improving Music Playback Prediction via Singer Popularity and Aspect-based Sentiment Analysis from Social Network

〇Chia-Hui Chang1, Chen-Yu Chen1, Arden Chiou2 (1. National Central University, 2. KKlab Technologies Limited)

キーワード:Playback predictio, Aspect based sentiment analysis, Singer recognition, Social network

For online music streaming platforms, social network analysis has provided extra information for hit song prediction as social networks become a new channel for the public to express their opinions toward all possible topics. This research exploits social network analysis for hit song prediction via singer popularity and aspect-based sentiment analysis. For each song, we analyze the popularity of the singers and songs on the social network ”PTT”, and apply the aspect-based sentiment analysis (ABSA) to perform sentiment analysis on the singer. These results are combined with platform information to predict the playbacks of popular songs. Experimental results show that adding "singer's popularity" and "target emotion" can reduce the RMSE (Root Mean Square Error) of subsequent on-demand songs.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード