2021年度 人工知能学会全国大会(第35回)

講演情報

IEEE CYBCONF

IEEE CYBCONF » IEEE CYBCONF

[3M1-CC] Synergy among Machine Learning, Computational Optimization, and Human Awareness / General Session – B

2021年6月10日(木) 09:00 〜 10:40 M会場 (CybConf会場)

Miho Ohsaki, Kei Ohnishi, Jun Yu

09:25 〜 09:50

[3M1-CC-02] Towards Understanding The Space of Unrobust Features of Neural Networks

Liao Bingli1, Takahiro Kanzaki1, Danilo Vasconcellos Vargas1 (1. Kyushu University)

Despite the convolutional neural network has achieved tremendous monumental success on a variety of computer vision-related tasks, it is still extremely challenging to build a neural network with doubtless reliability. Previous works have demonstrated that the deep neural network can be efficiently fooled by human imperceptible perturbation to the input, which actually revealed the instability for interpolation. Like humanbeings, an ideally trained neural network should be constrained within desired inference space and maintain correctness for both interpolation and extrapolation. In this paper, we develop a technique to verify the correctness when convolutional neural networks extrapolate beyond training data distribution by generating legitimated feature broken images, and we show that the decision boundary for convolutional neural network is not well formulated based on image features for extrapolating.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード