2021年度 人工知能学会全国大会(第35回)

講演情報

国際セッション

国際セッション(Work in progress) » EW-2 Machine learning

[3N3-IS-2e] Machine learning (5/5)

2021年6月10日(木) 15:20 〜 17:00 N会場 (IS会場)

Chair: Hisashi Kashima (Kyoto University)

16:40 〜 17:00

[3N3-IS-2e-05] Deep Inverse Reinforcement Learning with Adversarial One-Class Classification

〇Daiko Kishikawa1, Sachiyo Arai1 (1. Chiba University)

キーワード:Deep Inverse Reinforcement Learning, One-Class Classification, Adversarial Learning

Recently, inverse reinforcement learning, which estimates the reward from an expert's trajectories, has been attracting attention for imitating complex behaviors and estimating intentions. This study proposes a novel deep inverse reinforcement learning method that combines LogReg-IRL, an IRL method based on linearly solvable Markov decision process, and ALOCC, an adversarial one-class classification method. The proposed method can quickly learn rewards and state values without reinforcement learning executions or trajectories to be compared. We show that the proposed method obtains a more expert-like gait than LogReg-IRL in the BipedalWalker task through computer experiments.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード