2021年度 人工知能学会全国大会(第35回)

講演情報

講演取消

一般セッション

一般セッション » GS-2 機械学習

[4G1-GS-2j] 機械学習:要素技術

2021年6月11日(金) 09:00 〜 10:40 G会場 (GS会場 2)

座長:杉山 麿人 (国立情報学研究所)

10:20 〜 10:40

[4G1-GS-2j-05] フィーチャに基づく深層学習モデル設計方法の提案と評価

〇太田 龍之介1、青山 幹雄1 (1. 南山大学)

キーワード:深層学習、インクリメンタル開発

従来の深層学習モデル開発では要求を満たすモデルの生成には,しばしば開発者の試行錯誤が必要とされる.このような発見的開発方法では,要求を満たす精度の学習モデルを効率的,かつ,安定して開発することは困難である.
本稿では,データのフィーチャ(特徴量)に着目し,段階的に学習可能な学習モデル設計方法を提案する.提案方法では学習データの本質を表現するフィーチャをコントロールしながら段階的に学習を行うことで,学習のコントロールを実現する.これにより,機械学習ソフトウェア開発者が要求を満たす学習モデルの安定した開発を可能とする.
提案方法をCifar10データセットに適用し, 有効性と妥当性を示す.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード