Presentation information

General Session

General Session » GS-2 Machine learning

[4G2-GS-2k] 機械学習:基礎理論

Fri. Jun 11, 2021 11:00 AM - 12:40 PM Room G (GS room 2)

座長:谷口 忠大(立命館大学)

11:00 AM - 11:20 AM

[4G2-GS-2k-01] Constructing Neural Network by Kernel of Support Vector Machine

〇Shosuke Sakagawa1, Naoki Mori1 (1. Osaka Prefecture University)

Keywords:Neural Network, Support Vector Machine, Kernel Method

Recently, deep learning has made significant progress in the field of machine learning and has achieved excellent performance in various fields. Deep neural networks (DNNs), the foundation of deep learning, can acquire feature representations in hidden layers by learning input data. However, the explainability or interpretability of deep learning models is unclear, making it difficult to understand which part of the network structure is responsible for the performance. To improve this problem, we propose a method for constructing DNNs by using the kernels of pretrained support vector machines (SVMs). Setting up a hidden layer that behaves similarly to the SVM-kernels in the DNNs, we aim to improve the interpretability of the networks. The proposed method has an advantage that the weights of the networks, which are conventionally initialized randomly, can be set efficiently.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.