Presentation information

General Session

General Session » GS-7 Vision, speech media processing

[4I3-GS-7d] 画像音声メディア処理:画像理解

Fri. Jun 11, 2021 1:40 PM - 3:20 PM Room I (GS room 4)

座長:吉田 周平(NEC)

2:20 PM - 2:40 PM

[4I3-GS-7d-03] Cost-aware Active Learning for Semantic Segmentation

〇Kousuke Uo1, Hiroyoshi Ito1, Masaki Matsubara1, Atsuyuki Morishima1, Yukino Baba1 (1. University of Tsukuba)

Keywords:Active Learning, Semantic Segmentation, Machine Learning

With the recent developments of deep learning, the performance of semantic segmentation has been greatly improved. Creating a large set of traning data requires high annotation costs. One of the ways to reduce the annotation cost is active learning, which selects the data that is uncertain for the current model. Most of the active learning methods assume that the annotation cost of each data is constant; however, the annotation cost varies according to the data. This paper proposes an active learning strategy to select image regions that are expected to be informative and the annotation cost of which is low. Our method predicts the annotation time of each region and combines it to the uncertainty to calculate the score. The results of our preliminary experiment demonstrate that the proposed method is able to reduce the annotation cost in the early stage of training.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.