2023年度 人工知能学会全国大会(第37回)

講演情報

一般セッション

一般セッション » GS-2 機械学習

[2D4-GS-2] 機械学習:制約下の機械学習他

2023年6月7日(水) 13:30 〜 15:10 D会場 (大会議室 A1)

座長:白川 真一(横浜国立大学) [現地]

13:30 〜 13:50

[2D4-GS-2-01] Online Subspace Learning under Capricious Feature Data Streams

〇Han Zhou1,2, Shin Matsushima1 (1. The University of Tokyo, 2. Chongqing University)

キーワード:capricious features, data streams, online subspace learning

Online learning is advantageous for its efficiency and effectiveness in handling ever-growing data. Most existing methods assume that the features are fixed, but they can keep varying in such a way that old ones vanish and new ones emerge. To address these capricious features, this study proposes a subspace learning method. Specifically, a devised subspace estimator maps heterogeneous feature instances to a low-dimensional subspace and then a classifier is learned in this latent subspace. The estimator and the classifier are obtained recursively via alternating updating to sketch data in an online fashion. Under some mild assumptions, we provide its theoretical performance guarantee. The experimental results on several datasets corroborate the rationality of the theoretical analysis and the effectiveness of this novel scheme.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード