9:00 AM - 9:20 AM
[2Q1-IS-3-01] Assessing the Aesthetic Evaluation Capabilities of GPT-4 with Vision: Insights from Group and Individual Assessments
Keywords:Aesthetic evaluation, Large language models , Personalization
Recently, it has been recognized that large language models demonstrate high performance on various intellectual tasks. However, few studies have investigated alignment with humans in behaviors that involve sensibility, such as aesthetic evaluation. This study investigates the performance of GPT-4 with Vision, a state-of-the-art language model that can handle image input, on the task of aesthetic evaluation of images. We employ two tasks, prediction of the average evaluation values of a group and an individual’s evaluation values. We investigate the performance of GPT-4 with Vision by exploring prompts and analyzing prediction behaviors. Experimental results reveal GPT-4 with Vision’s superior performance in predicting aesthetic evaluations and the nature of different responses to beauty and ugliness. Finally, we discuss developing an AI system for aesthetic evaluation based on scientific knowledge of the human perception of beauty, employing agent technologies that integrate traditional deep learning models with large language models.
Authentication for paper PDF access
A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.