JSAI2024

Presentation information

Organized Session

Organized Session » OS-27

[3I5-OS-27b] OS-27

Thu. May 30, 2024 3:30 PM - 4:50 PM Room I (Room 41)

オーガナイザ:田部井 靖生(理化学研究所)、竹内 孝(京都大学)、藤井 慶輔(名古屋大学大学院情報学研究科)、沖 拓弥(東京工業大学 環境・社会理工学院)、西田 遼(東北大学 大学院情報科学研究科)、前川 卓也(大阪大学大学院情報科学研究科)

4:30 PM - 4:50 PM

[3I5-OS-27b-04] Hierarchical Integration of Deep Reinforcement Learning with a Pursuit Behavioral Model for Robust and Interpretable Navigation

〇Kazushi Tsutsui1, Kazuya Takeda1, Keisuke Fujii1,2 (1. Nagoya University, 2. RIKEN)

Keywords:Multi-agent, Reinforcement learning, Cooperation

Integrating theoretical models into machine learning models holds immense potential for constructing efficient, robust, and interpretable models. Here, we propose a hybrid architecture that hierarchically integrates a biological pursuit model into deep reinforcement learning. This approach enables seamless acceleration-mode switching and geometrically reasonable action selection, demonstrating our hierarchical predator agents realized efficient navigation in a predator-prey environment. Interestingly, our results have commonalities with group hunting behaviors observed in nature, suggesting the potential application of our model as a tool for providing new insights into biology.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.

Password