JSAI2024

Presentation information

Poster Session

Poster session » Poster session

[3Xin2] Poster session 1

Thu. May 30, 2024 11:00 AM - 12:40 PM Room X (Event hall 1)

[3Xin2-85] Strategy evolution using natural language between LLM agents

〇Ilya Horiguchi1, Takahide Yoshida1, Takashi Ikegami1 (1.The University of Tokyo)

Keywords:Large Language Model, Game Theory

Recent advancements in Large Language Models (LLMs) have spurred a surge of interest in leveraging these models for game-theoretical simulations, where LLMs act as individual agents engaging in social interactions. This study explores the potential for LLM agents to spontaneously generate and adhere to normative strategies through natural language discourse, building upon the foundational work of Axelrod's Norms Game. Our experiments demonstrate that through dialogue, LLM agents can form complex social norms, such as metanorms—norms enforcing the punishment of those who do not punish cheating—purely through natural language interaction. The results affirm the effectiveness of using LLM agents for simulating social interactions and understanding the emergence and evolution of complex strategies and norms through natural language. Future work may extend these findings by incorporating a wider range of scenarios and agent characteristics, aiming to uncover more nuanced mechanisms behind social norm formation.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.

Password