The 65h JSAP Spring Meeting, 2018

Presentation information

Poster presentation

12 Organic Molecules and Bioelectronics » 12.3 Functional Materials and Novel Devices

[17p-P6-1~34] 12.3 Functional Materials and Novel Devices

Sat. Mar 17, 2018 1:30 PM - 3:30 PM P6 (P)

1:30 PM - 3:30 PM

[17p-P6-34] Ferroelectric and piezoelectric characterization of P(VDF-TrFE)/ionic liquid gels

Miki Fukagawa1, Yasuko Koshiba1, Masahiro Morimoto1,2, Tatsuya Fukushima1, Kenji Ishida1 (1.Kobe Univ., 2.Univ. of Toyama)

Keywords:organic ferroelectric, ionic liquid, piezoelectric

Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4–9 MV/m, and their remnant polarizations were maintained at 63–71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ~300 pm/V at an applied voltage frequency of 4 kHz.