2019年第80回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

コードシェアセッション » 【CS.1】 3.3 情報フォトニクス・画像工学と4.4 Information Photonicsのコードシェアセッション

[18p-E215-1~9] 【CS.1】 3.3 情報フォトニクス・画像工学と4.4 Information Photonicsのコードシェアセッション

2019年9月18日(水) 13:15 〜 16:15 E215 (E215)

堀崎 遼一(阪大)、山本 裕紹(宇都宮大)

15:45 〜 16:00

[18p-E215-8] Starting points generation for freeform reflective imaging system design using neural network based deep-learning

Tong Yang1、Dewen Cheng1、Yongtian Wang1 (1.School of Optics and Photonics, Beijing Institute of Technology)

キーワード:machine learning, freeform imaging system, neural network

Using freeform optical surfaces is a revolution in the field of imaging system design. Such systems have important applications in the area of virtual reality and augmented reality, light-field and high-performance cameras, microscopy, spectroscopy, and other applied physics researches. We propose a framework of starting points generation for freeform reflective imaging systems using back-propagation neural network based deep-learning. Good starting points of specific system specifications for optimization can be generated immediately using the network. The amount of time and human effort as well as the dependence on advanced design skills reduce significantly.