4:45 PM - 5:00 PM
▲ [18p-E216-13] Magnetic damping of NiMnSb half-Heusler alloy film with varying annealing temperature
Keywords:half-Heusler alloy, Structural Ordering, Magnetic Damping
Half-metallic Heusler alloys are primitive candidates for application in spintronic devices, such as magnetoresistive random access memory, current-perpendicular-to-plane giant magnetoresistance read heads for hard disk drives for their high spin polarization value and large magnetoresistance ratio. Compared to full Heusler alloys, half-Heusler alloys, owing to a large bandgap which helps to suppress thermal activation of electrons over the bandgap, could be advantageous for high-performance magnetoresistive devices. Epitaxially grown NiMnSb is a well-known candidate with all-potential properties for such applications. To further investigate the possibilities of this material for application in spintronic devices, the estimation of Gilbert damping is necessary. So, here we report the estimation of Gilbert damping as a function of annealing temperature (Tannl) and structural ordering.