The 66th JSAP Spring Meeting, 2019

Presentation information

Oral presentation

10 Spintronics and Magnetics » 10.4 Semiconductor spintronics, superconductor, multiferroics

[12a-M101-7~11] 10.4 Semiconductor spintronics, superconductor, multiferroics

Tue. Mar 12, 2019 10:45 AM - 12:00 PM M101 (H101)

Nozomi Nishizawa(Tokyko Tech)

10:45 AM - 11:00 AM

[12a-M101-7] Spin manipulation by spin-momentum locking in an InGaAs-based two-dimensional electron gas

Makoto Kohda1,2,3, Takanori Okayasu1, Junsaku Nitta1,2,3 (1.Tohoku Univ., 2.Tohoku Univ. CSRN, 3.Tohoku Univ. CSIS)

Keywords:Spin orbit interaction, Spin momentum locking

Spin-momentum locking, which constrains spin orientation perpendicular to electron momentum, provides a basic concept to control electron’s spin and charge flow in variety of material systems such as topological insulators, semiconductors, and heavy metals. Induced helical spin texture at the Fermi surface allows us to efficiently generate and detect spin polarization without an external magnetic field or magnetic materials.
While spin generation and spin detection using spin-momentum locking have been intensively explored at Rashba interfaces and topological surface states, spin manipulation has yet to be demonstrated: it remains the missing ingredient towards full set of spin control by spin-momentum locking. Here, we experimentally manifested spin manipulation by spin-momentum locking in a magnetic focusing device. In a two-dimensional system with strong spin-orbit interaction, spin orientation is preferentially directed toward the spin-orbit-induced magnetic field and remains focused in this direction due to spin-momentum locking.