2021年第82回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

CS コードシェアセッション » 【CS.4】 3.6 超高速・高強度レーザー、3.7 レーザープロセシング、4.3 Lasers and laser materials processingのコードシェアセッション

[13p-N404-1~7] CS.4 3.6 超高速・高強度レーザー、3.7 レーザープロセシング、4.3 Lasers and laser materials processingのコードシェアセッション

2021年9月13日(月) 13:30 〜 16:00 N404 (口頭)

坂倉 政明(MSRケンブリッジ)

15:15 〜 15:30

[13p-N404-6] 3D Glass Microfluidic SERS Chip Fabricated by Hybrid Femtosecond Laser Processing for Biomolecule Sensing

〇(P)Shi Bai1、Koji Sugioka1 (1.RAP, RIKEN)

キーワード:Laser processing, Microfluidic chip, SERS

Microfluidic surface-enhanced Raman scattering (SERS) chip is increasingly becoming an attractive tool for biomedical sensing, due to its high sensitivity, repeatability, in-situ and real-time analysis, which includes cancer identification, tissue therapy, and bio-imaging.[1] Recently, we developed a novel technique termed liquid-interface assisted SERS (LI-SERS) which realized attomolar sensing with an enhancement factor of 1.5 × 1014.(Fig. 1 (a)) [2] The microfluidic SERS chips were fabricated using hybrid femtosecond laser processing consisting of femtosecond laser assisted chemical etching, selective metallization and metal surface nanostructuring.[3] The nanostructuring of Ag/Cu SERS substrate in the microfluidic chip was performed based on 515 nm femtosecond laser induced periodic surface structure (fs-LIPSS). The enhancement mechanisms for LI-SERS were ascribed to the laser-induced local aggregation and optical trapping of analyte molecules on SERS substrate. In this study, we demonstrate the applications of LI-SERS using microfluidic SERS chips for biomolecule sensing, including the discrimination of deoxyribonucleic acid sequences (DNA oligo) (Fig. 2(b)) and the detection of proteins.
Figure 1. (a) The time-lapse intensity change at 1183 cm-1 for R6G solution (10-11 M) by LI-SERS using the microfluidic SERS chip. The intensity drastically changes depending on the excitation laser irradiation schemes on SERS substrate which are (Ⅰ) in analyte solution, (Ⅱ) at the interface, and (Ⅲ) in air. (b) Discrimination of DNA oligos (10-12 M) using LI-SERS method.
References
[1] S. Bai, K. Sugioka. Light Adv. Manuf. 2021, 2, 1.
[2] S. Bai, D. Serien et al. ACS Appl. Mater. Inter. 2020, 12, 42328.
[3] S. Bai, D. Serien et al. Adv. Funct. Mater. 2018, 28, 1706262.