2022年第83回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

FS フォーカストセッション「AIエレクトロニクス」 » FS.1 フォーカストセッション「AIエレクトロニクス」

[20a-M206-1~10] FS.1 フォーカストセッション「AIエレクトロニクス」

2022年9月20日(火) 09:00 〜 12:00 M206 (マルチメディアホール)

丸亀 孝生(東芝)

10:30 〜 10:45

[20a-M206-5] Folded-in-time deep neural networks: Emulating deep neural networks via delay dynamics

〇(P)Andre Roehm1,2、Florian Stelzer3,4、Raul Vicente3、Ingo Fischer2、Serhiy Yanchuk4、Satoshi Sunada5、Tomoaki Niiyama5、Ryoichi Horisaki1、Makoto Naruse1 (1.Univ. of Tokyo、2.IFISC, CSIC-UIB、3.Univ. of Tartu、4.TU Berlin、5.Kanazawa Univ.)

キーワード:neural network, delay dynamics, adjoint control

Deep neural networks (DNN) can successfully perform a large variety of tasks through training, but are increasingly consuming more energy and larger computers to run. New fundamental ways to implement information processing with physical systems can open up alternatives for different applications. In this presentation, recent advances on how a deep neural network can be emulated by a delay-system are shown. We present numerical results on MNIST, CIFAR-10 and other image recognition tasks via the use of a Folded-in-time Deep Neural Network (Fit-DNN). The hardware requirements for a Fit-DNN would be much lower than for conventional physical implementations of DNNs.