第25回応用力学シンポジウム

Presentation information

Common session

Organized Session(計算力学×データサイエンス)

企画セッション: 計算力学×データサイエンス

Sat. May 28, 2022 1:00 PM - 2:30 PM Metting room B (Online)

座長:藤田 航平(東京大学)

1:30 PM - 1:45 PM

[2B13-18-03] Improving sequential Bayesian update for tsunami scenario detection by using geodetic data learning

*Reika Nomura1, Yu Otake1, Shuji Moriguchi1, Diego Melgar2, Randall LeVeque3,1, Kenjiro Terada1 (1. Tohoku University, 2. University of Oregon, 3. University of Washington)

Keywords:Tsunami scenario detection, Bayesian update, GNSS geodetic data

In this study, we investigate the effectiveness of geodetic data monitored by GNSS (Global Navigation Satellite System) as the prior learning to observational ocean data for the improved tsunami scenario detection. For the case study targeting Nankai-trough, 600 earthquake/tsunami scenarios are generated by GeoClaw and fakequake software. With the synthetically generated geodetic displacements by fakequake software, we examine the reasonable initial probability setting which is prior to the learning on the ocean wave data.