資源・素材2024(秋田)

講演情報(2024年8月7日付 確定版)

企画講演

【企画講演】資源探査における大規模データと掘削情報プロセッシングの動向 [9/11(水) AM 第2会場]

2024年9月11日(水) 09:00 〜 12:00 第2会場 (一般教育2号館 1F 102)

司会:木﨑 彰久(秋田大学)、久保 大樹 (京都大学)

●鉱物・エネルギー資源の探査に関する最新の技術動向や基礎研究、陸から海に至るリモートセンシング、物理探査、化学分析、掘削情報などのマルチスケール情報、さらに、地球・環境科学および数理情報科学を含む幅広いテーマについて議論し、資源・素材研究における新たな価値創造を目指す。

<発表:20分中、講演15分、質疑応答5分/1件>

10:40 〜 11:00

[2201-08-05] 機械学習を用いたマグマ-熱水系における鉱化プロセスの識別

○朱 登輝1[博士課程]、王 佳婕1、土屋 範芳1,2 (1. 東北大学、2. 八戸高専)

司会:久保 大樹 (京都大学)

キーワード:石英、マグマ-熱水系、機械学習、鉱化プロセス、識別

Quartz trace elements record physical and chemical evolutions of quartz growth, serving as vital indicators in exploring the evolution of ore-forming fluid and the precipitation of mineral deposits. However, previous studies utilizing quartz trace elements to discriminate ore-forming process in magmatic-hydrothermal systems only analyze two or three elements, which is ineffective in interpreting evolution process of the systems. Considering the promising advantages of machine learning technique for processing large-sized and high-dimensional data, this research aims to propose a new machine learning-based method to discern the ore-forming process in magmatic-hydrothermal systems based on quartz trace element chemistry.

In this study, we compiled 4000 quartz analysis data of 7 trace elements (Li, Na, Al, Ti, Ge, Sr, Sn) of different genetic environments from I-type porphyry-epithermal, S- and A-type granite-greisen systems by previous literatures. Then, by employing Random Forest to analyze the compiled quartz trace element content data, combined with Recursive Feature Elimination for selecting the key elements, we built different models to identify the forming environments of quartz in above mentioned systems step by step with the average F1 score higher than 95%. The roles of quartz trace elements in discriminating the evolution processes of different magmatic-hydrothermal systems were then summarized. Finally, Uniformed Manifold and Uniform Manifold Approximation and Projection was applied in visualizing the identification results. This research demonstrates the superior performance of our machine learning models and we expect our work can provide new insights into exploring ore-forming processes in magmatic-hydrothermal systems and valuable guidance for mineral exploration efforts, with potential applications in other geological settings.

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

パスワード