資源・素材2024(秋田)

講演情報(2024年8月7日付 確定版)

一般講演

【一般講演】 開発機械/ 岩盤工学/ 資源開発技術 [9/12(木) PM 第1会場]

2024年9月12日(木) 13:00 〜 15:15 第1会場 (一般教育2号館 1F 101)

司会:小林 和弥(京都大学)、玉村 修司(幌延地圏環境研究所)

●開発機械:資源生産や地下空間利用のために用いられる技術について、岩盤掘削・破砕やその制御など、計測や機械工学的側面を中心とした議論を行う。

●岩盤工学:岩盤の力学特性,地山応力など、地下の岩盤の状態の把握に必要な基礎的な試験技術,解析技術、そしてこうした技術を用いたケーススタディについて議論を行う。

●資源開発技術:エネルギーや金属鉱物などの資源の開発に必要な上流から下流までの開発・生産の技術に関する科学的・技術的な現状および課題について議論を行う

<発表時間20分中、講演15分、質疑応答5分/1件>

14:35 〜 14:55

[3108-13-05] Development of Mining Exploration through AI and Georeferenced Hyperspectral/Multispectral Datasets, Pilot Along Nickel Based Zone

○ARMANDINE RASOANINDRIANA1[修士課程], HISATOSHI TORIYA1, TSUYOSHI ADACHI1, NARIHIRO OWADA1, YOUHEI KAWAMURA1 (1. AKITA UNIVERSITY)

司会:玉村 修司(幌延地圏環境研究所)

キーワード:Nickel based zone, Georeferenced , Machine learning, Hyperspectral/Multispectral, Exploration

The integration of Artificial Intelligence (AI) with georeferenced hyperspectral and multispectral imagery datasets represents a transformative approach in the field of mining exploration. This approach uses advanced machine learning algorithms to improve mineral deposit identification and analysis, enhancing exploration efficiency and accuracy. These imaging techniques capture detailed characteristics of features along Nickel Based Zone. Georeferencing images provides spatial accuracy and links all related datasets to geographic coordinates, ensuring precise and efficient resource use to facilitate potential mapping of mineral resources.
AI, Machine Learning (ML), handles extensive hyperspectral and multispectral data from various sensors using Neural Network Training (NNT) techniques such as Autoencoders, Principal Component Analysis (PCA), and Convolutional Neural Networks (CNNs). Additionally, ML continuously adapts and improves by learning from new data. These methods learn efficient data representations, capture essential features, reduce dataset dimensionality, enhance feature extraction and spectral signature generation. The synergy of AI and georeferenced hyperspectral/multispectral datasets automates tasks, saving time and effort, while handling diverse data types and large capacities, thereby reducing exploration costs through real time automated analysis and processing. Additionally, green exploration trends are supported, minimizing environmental impact.
In conclusion, integrating AI with georeferenced hyperspectral/multispectral datasets advances significantly mining exploration. Improved efficiency, accuracy, and sustainability in mineral exploration lead to better resource management practices. As technology evolves, AI`s role in mining will expand to offer new opportunities for the discovery and utilization of mineral resources.

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

パスワード