資源・素材2024(秋田)

講演情報(2024年8月7日付 確定版)

一般講演

【一般講演】 開発機械/資源開発技術 [9/12(木) AM 第2会場]

2024年9月12日(木) 09:00 〜 11:55 第2会場 (一般教育2号館 1F 102) (一般教育2号館 1F 102)

司会:吉光 奈奈(京都大学)、久保 大樹(京都大学)

●開発機械:資源生産や地下空間利用のために用いられる技術について、岩盤掘削・破砕やその制御など、計測や機械工学的側面を中心とした議論を行う。

●資源開発技術:エネルギーや金属鉱物などの資源の開発に必要な上流から下流までの開発・生産の技術に関する科学的・技術的な現状および課題について議論を行う

<発表時間20分中、講演15分、質疑応答5分/1件>

09:20 〜 09:40

[3201-08-02] Deep Learning and Hyperspectral Image Optimised Lithology Classification from Tunnel Boring Machine

○Brian Bino Sinaice1, Kursat Kilic1, Narihiro Owada1, Jun Abe1, Natsuo Okada2, Hajime Ikeda3, Hisatoshi Toriya1, Tsuyoshi Adachi1, Youhei Kawamura2 (1. Akita University, 2. Hokkaido University, 3. National Institute of Technology, Asahikawa College)

司会:吉光 奈奈(京都大学)

キーワード:Hyperspectral Imaging, Deep Learning, Lithology Classification, Convolutional Neural Network, Tunnel Boring Machine

The tunnel boring machine (TBM) is a sophisticated engineering tool that automates tunnel excavation. It features a rotating cutter head equipped with cutting tools capable of penetrating a variety of geological formations, from soft soil and clay to hard rock and abrasive materials. Consequently, lithology classification is a crucial factor in optimizing tunnelling performance and managing time constraints during excavation. However, the mechanization of TBM tunnelling reduces human presence at the tunnel face, complicating the identification of lithology during the process. To address this challenge, this paper introduces the use of hyperspectral camera data, processed through a deep learning convolutional neural network (CNN), to identify and classify lithology from the excavated cuttings, thereby enhancing tunnelling performance. The study focuses on a 118-meter highway bypass tunnelling project in Japan, where a micro tunnelling method was employed to install umbrella pipe supports. Excavated material was collected on a screw conveyor and sampled with each advance. The samples were captured using a 204-band hyperspectral camera and analysed with a CNN, revealing the geological compositions as sandy clay (0 – 40 m), sand (40 – 58 m), brown clay (58 – 66 m), blue clay (66 – 84 m), and sandy clay (84 – 118 m). By training the CNN through a 5-fold cross-validation, the CNN categorised these lithologies into four main classes, thereby achieving accuracy and average per-class precision exceeding 90%. These results demonstrate the potential of integrating hyperspectral imaging and deep learning technologies in TBM operations, providing a robust method for real-time lithology classification. This approach not only improves the efficiency and accuracy of tunnelling projects, it ensures better management of geological variations encountered during excavation.