資源・素材2025(札幌)

講演情報(2025年8月7日付 確定版)

企画講演

【企画講演】 英語による学術交流セッション [9/2(火) AM  第3会場]

2025年9月2日(火) 09:00 〜 11:55 第3会場 (C棟2階214)

司会:パク イルファン(北海道大学)、芳賀 一寿(秋田大学)

●国籍、分野、年齢を問わず、研究者、学生、実務者が英語で自身の研究成果を発表・議論できる、開かれたインクルーシブな場を提供することを目的とする。 英語を共通言語とすることで、多様な背景を持つ参加者同士の相互理解と学術的交流を促進する。

<発表20分中:講演15分、質疑5分/1件>

09:00 〜 09:20

[1301-08-01] Hybrid AI–Geostatistical Modeling for 3D Ash Prediction and Zoning in Sparse Drillhole Environments: A Case Study Integrating 3D Block Model and Machine Learning

○Angesom Gebretsadik Abraha1[博士課程],2, Natsuo Okada 1, Ryo Itano1, Yoko Ohtomo1, George Mathews3, Youhei Kawamura1 (1. Hokkaido University, 2. Aksum University, 3. Nazarbayev University)

司会:パク イルファン(北海道大学)

キーワード:Hybrid modeling, Coal quality, Machine Learning, Geostatistics, Smart mining

Accurate ash content prediction and spatial zoning are essential for coal quality control, mine planning, and environmental management. However, in areas with sparse drilling data, conventional geostatistical approaches such as kriging often fail to capture non-linear geological variability, leading to inaccurate predictions. This study presents a hybrid modeling framework that integrates geostatistics with artificial intelligence (AI) to improve the accuracy of ash content prediction and delineation of ash-rich zones in a 3D geological context. Using data from a coal deposit characterized by limited borehole coverage, we first performed kriging-based estimation of ash content on a 3D block model to capture spatial continuity. Then, machine learning algorithms including XGBoost, Random Forest, and LightGBM were trained on residuals to capture non-linear patterns missed by geostatistics. These models were optimized using hyperparameter tuning strategies such as GridSearchCV and Optuna. The outputs were combined into a hybrid model that leverages both spatial and contextual features. Performance metrics (R², RMSE, MAE) demonstrate that the hybrid model significantly outperforms both standalone kriging and AI models. The hybrid approach significantly improves predictive performance compared to standalone methods, as evaluated using R², RMSE, and MAE. Ash zoning maps generated from the hybrid model provide clearer identification of ash zones, supporting more effective selective mining strategies. This integrated methodology demonstrates strong potential for sustainable and cost-effective resource management in data-limited mining environments.

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

パスワード