資源・素材2025(札幌)

講演情報(2025年8月7日付 確定版)

企画講演

【企画講演】 YARO16 岩盤力学の新潮流-若手研究者の挑戦と展望 [9/3(水) AM  第1会場]

2025年9月3日(水) 08:50 〜 10:45 第1会場 (C棟2階212)

司会:福田大祐(北海道大学)、才ノ木敦⼠(熊本大学)

●岩盤力学・岩盤工学の分野においては、従来の理論や手法に加え、新しい解析技術や実験的アプローチが次々と登場している。本企画講演セッションでは、岩盤力学・岩盤工学を専門とする若手研究者が自身の研究テーマや最新の取り組みについて発表し、参加者と意見交換をを行うことを目的とする。

<発表20分中:講演15分、質疑5分/1件>

09:15 〜 09:35

[2101-05-02] Investigation of Rock Fracture Mechanisms under Various Dynamic Loading Conditions across Different Scales through Experimental and Numerical Simulation Approaches

○Gyeongjo Min1 (1. Hokkaido University)

司会:福田大祐(北海道大学)

キーワード:Dynamic rock fracture, High strain-rate, Split Hopkinson Pressure Bar (SHPB), Finite-Discrete Element Method (FDEM), Rock fracture across different scales

Understanding the dynamic fracture behavior of rocks is essential for the design and stability assessment of rock structures subjected to high-strain-rate conditions, such as those induced by seismic events, rock blasting, and impact. This study presents both experimental and numerical approaches to investigate rock fracturing mechanisms under various dynamic loading conditions across different scales, ranging from laboratory-scale to field-scale applications.At the laboratory scale, a series of dynamic rock fracture tests—including dynamic uniaxial compression, Brazilian tensile, spalling, and Mode I fracture toughness tests—were conducted using a Split Hopkinson Pressure Bar (SHPB) system, which is widely employed to evaluate rock behavior under high-strain-rate conditions (typically ranging from 10 to 1000/s). These experiments provide fundamental insights into dynamic fracture behavior under different loading environments and yield key mechanical properties that can be incorporated into the design of rock structures subjected to dynamic loads.To enhance the understanding of dynamic rock fracture behavior, a three-dimensional numerical simulation tool based on the combined finite-discrete element method (FDEM) has been developed. This tool enables detailed simulation of fracture initiation, crack propagation, and contact interactions under dynamic loading. By comparing experimental observations with numerical results, the study aims to clarify the governing mechanisms of dynamic rock fracturing, as well as to accurately simulate the fracture process.Furthermore, both the experimental findings and the developed numerical simulation model are extended to analyze and simulate larger-scale phenomena, such as rock penetration and field-scale blasting tests. These applications help validate the simulation approach and contribute to a deeper understanding of rock fracture behavior across different scales.

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

パスワード