日本地震学会2022年度秋季大会

講演情報

B会場

特別セッション » S21. AIによる地震学の発展

[S21] AM-1

2022年10月25日(火) 10:00 〜 11:30 B会場 (4階(大会議室))

座長:久保 久彦(防災科学技術研究所)、直井 誠(京都大学防災研究所)、岡崎 智久(理化学研究所 革新知能総合研究センター)

10:00 〜 10:15

[S21-01] [Invited]Detecting slow slip events and accompanying tectonic tremor in geodetic and seismic data, using machine learning

*ROUET-LEDUC Bertrand1 (1. DPRI, Kyoto University)

Faults can accommodate stress in a variety of slip modes, from dynamic rupture to slow slip events and aseismic slip. Among these slip modes, slow slip events and often-accompanying tremor remain among the most elusive and poorly understood.

Unraveling the interactions between slip modes is at stake: while laboratory experiments point to aseismic nucleation generally preceding dynamic rupture, observations in the field are far from systematic, and more the exception than the rule.

However, the difficulty in detecting transient slow slip events, either seismically or geodetically, points to a possible observational gap that may explain the rarity of slow deformation detected prior to dynamic earthquakes.

In this presentation, the use of machine learning to improve the detection of slow slip events and accompanying tectonic tremor will be explored, as a tool to fill this observational gap, both in seismic data and in geodetic data.