日本地震学会2024年度秋季大会

講演情報

C会場

特別セッション » S21. 情報科学との融合による地震研究の加速

[S21] PM-1

2024年10月22日(火) 13:30 〜 14:00 C会場 (3階中会議室302)

座長:加納 将行(東北大学大学院理学研究科)、太田 雄策(東北大学大学院理学研究科地震・噴火予知研究観測センター)

13:30 〜 13:45

[S21-11] Bayesian non-parametric inference for the ETAS model

*牛 源源1,2、庄 建倉2,1 (1. 総合研究大学院大学、2. 統計数理研究所)

The epidemic type aftershock sequence (ETAS) model, an example of a self-exciting, spatiotemporal, marked Hawkes process, is widely used in statistical seismology to describe the self-exciting mechanism of earthquake occurrences. The ETAS model is characterized by the rate of arriving earthquake events conditioned on the history of previous events, which is also called the conditional intensity function. Fitting an ETAS model to data requires us to estimate the conditional intensity function. Many previous methods, including parametric and non-parametric, have certain limitations in quantifying uncertainty since most estimation techniques deliver a point estimate for the conditional intensity function. The GP-ETAS model defines the background intensity in a Bayesian non-parametric way through the Gaussian Process prior, allowing us to incorporate prior knowledge and effectively encode the uncertainty of the quantities arising from data and prior information. Based on the GP-ETAS model, we have carried out some new research topics, and some work is still ongoing. This presentation introduces the GP-ETAS model and some developments we have made.