2021年度 人工知能学会全国大会(第35回)

講演情報

IEEE CYBCONF

IEEE CYBCONF » IEEE CYBCONF

[1M3-CC] Machine Learning Application to Medical Engineering

2021年6月8日(火) 15:20 〜 17:00 M会場 (CybConf会場)

Kento Morita, Yuki Shinomiya

15:45 〜 16:10

[1M3-CC-02] Predictors of Intracerebral Hematoma Enlargement Using Brain CT Images in Emergency Medical Care

Kazunori Oka1, Takumi Hirahara1, Yasunobu Nohara2 Sozo Inoue3 Koichi Arimura4, Koji Iihara5, Syoji Kobashi1 (1. University of Hyogo, 2. Kumamoto University, 3. Kyushu Institute of Technology, 4. Kyushu University, 5. National Cerebral and Cadiovascular Center)

Intracerebral hematoma (ICH) is the cause of intracerebral hemorrhage. Acute enlargement of the ICH is high risk, and emergency surgical treatment is required. Therefore, prediction of ICH enlargement is essential to improve a survival rate and outcome. The purpose of this study is to find factors to predict the ICH enlargement with thick slice head CT images. We propose three kinds of feature extraction methods, (1) shape and texture features, (2) layered texture features, and (3) anatomical location features. In addition, we introduce an ICH enlargement prediction method using support vector machine (SVM) and feature selection. The experimental results showed that the angular second order moment of the texture feature was the most effective in predicting the ICH enlargement. By using this feature, we were able to predict the ICH enlargement with an accuracy of 75.7%. In addition, we found that normalization of the location and posture improved the prediction accuracy by 2.7% compared to that without normalization

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード