2024年度 人工知能学会全国大会(第38回)

講演情報

国際セッション

国際セッション » IS-1 Knowledge engineering

[2Q5-IS-1] Knowledge engineering

2024年5月29日(水) 15:30 〜 17:10 Q会場 (402会議室)

座長:西田 遼(産業技術総合研究所)

16:50 〜 17:10

[2Q5-IS-1-05] Evaluating Color-Word Association in LLM

A Comparative Study of Human and AI

〇Makoto Fukushima1, Saki Kanada2, Shusuke Eshita2, Hiroshige Fukuhara2 (1. Deloitte Touche Tohmatsu LLC, 2. Sony Design Consulting Inc.)

キーワード:Large Language Model, Color, Design

Color is associated with various concepts, emphasizing functional significance in the design process. This study aims to evaluate the capability of Large Language Models (LLMs) in replicating human color-word associations. Leveraging a comprehensive dataset of human responses previously reported, with applications targeting color design [Fukushima 2021], we compare the predictive accuracy of LLMs against actual human associations between specific colors and words. We probed multiple LLMs with a series of multiple-choice questionnaires, originally designed for human participants. Our preliminary results indicate that LLMs achieve moderate success, with an accuracy rate of around 30-40% in predicting the best-voted words for all colors. We observed a marginal increase in performance for GPT-4, a multimodal LLM, compared to its predecessor, GPT-3.5. This suggests that while LLMs can mimic certain aspects of human cognitive processes, there are limitations in their ability to fully replicate human-level color-word associations. These limitations might stem from the inherent difficulties of symbol grounding in LLMs, or from a fundamentally different memory association structure in LLMs compared to humans.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード