2024年度 人工知能学会全国大会(第38回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[3Q1-IS-2a] Machine learning

2024年5月30日(木) 09:00 〜 10:40 Q会場 (402会議室)

座長:打矢 隆弘(名古屋工業大学)

09:00 〜 09:20

[3Q1-IS-2a-01] Exploring Challenges in Extracting Structured Knowledge from Financial Documents

〇Rungsiman Nararatwong1, Natthawut Kertkeidkachorn2, Ryutaro Ichise3,1 (1. National Institute of Advanced Industrial Science and Technology, 2. Japan Advanced Institute of Science and Technology, 3. Tokyo Institute of Technology)

キーワード:Entity linking, Finance, Knowledge base

In 2018, the U.S. Securities and Exchange Commission adopted amendments requiring the use of Inline XBRL, a structured data language mandating financial documents to be both human-readable and machine-readable. However, this implementation does not include older filings made by and for humans, leading to large pieces of information missing from the structured data. This paper discusses the challenges in extracting facts from these documents, followed by experiments and analyses on entity-linking approaches. The results highlight the complexity of the problem, warranting future research on the topic.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード