2024年度 人工知能学会全国大会(第38回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[3Q1-IS-2a] Machine learning

2024年5月30日(木) 09:00 〜 10:40 Q会場 (402会議室)

座長:打矢 隆弘(名古屋工業大学)

09:20 〜 09:40

[3Q1-IS-2a-02] A Weakly Supervised Approach Leveraging Causal-sensitive Sentence Embeddings by Contrastive Learning for Discerning Economic Causality

〇Ryotaro Kobayashi1, Yuri Murayama1, Kiyoshi Izumi1 (1. The University of Tokyo)

キーワード:Causal Discovery, Text Mining, Human Experts

Comprehending the causal relationships among economic events is crucial for risk management because it aids in forecasting potential external shocks and formulating informed predictions regarding the results of prospective actions. The recent advancement of large language models (LLMs) offers a viable method for extracting domain-specific knowledge from textual content to develop causal graphs. Nonetheless, accurately identifying causal relationships that align with expert evaluations remains challenging in computational text analysis, particularly for financial and economic documents that demand specialized expertise. In response to this issue, we introduce a method utilizing causal-sensitive sentence embeddings, which excel in discerning causal relationships through fine-tuning text embedding models employing contrastive learning. This method employs a weakly supervised learning paradigm, generating the necessary training dataset for contrastive learning from extensive textual corpora via causal cues and LLMs. The evaluation experiments on four datasets against baseline methods highlight the effectiveness of our method.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード