2024年度 人工知能学会全国大会(第38回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[3Q1-IS-2a] Machine learning

2024年5月30日(木) 09:00 〜 10:40 Q会場 (402会議室)

座長:打矢 隆弘(名古屋工業大学)

10:00 〜 10:20

[3Q1-IS-2a-04] The Impact of Noisy Information in Knowledge Graphs on Recommendation Performanc

〇Yun Liu1, Natthawut Kertkeidkachorn2, Jun Miyazaki3, Ryutaro Ichise3,1 (1. National Institute of Advanced Industrial Science and Technology, 2. Japan Advanced Institute of Science and Technology, 3. Tokyo Institute of Technology)

キーワード:Knowledge-aware recommendation, Knowledge graph, Recommender systems

Knowledge graphs (KGs) have been widely used in recommender systems (RSs) as item auxiliary descriptions for high-quality recommendation. In current KG-based RSs, KGs are usually built based on entity linking and name matching operations. The limited manual supervision during the construction process will produce the untrustworthy information in KGs. In addition, entities in KGs suffer from long-tail distribution problem and contain connections that are irrelevant to the recommendation target. Such untrustworthy information and irrelevant connections is noise in KGs and becomes an obstacle to high-quality recommendations. In order to clearly show the impact of noisy information in KGs on recommendation tasks, we propose a general way to effectively remove these noises from knowledge graphs. Furthermore, we combine our method with current KG-based methods, and the improvement in recommendation performance shows the harm of noise information in KGs to recommendation tasks. It also clearly demonstrates the necessity of current KG-based RSs to detect and remove noise information in KGs.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード