2024年度 人工知能学会全国大会(第38回)

講演情報

オーガナイズドセッション

オーガナイズドセッション » OS-17 ひと中心の未来社会とAI

[4P1-OS-17b] ひと中心の未来社会とAI

2024年5月31日(金) 09:00 〜 10:40 P会場 (401会議室)

オーガナイザ:名取 直毅(株式会社アイシン)、梶 大介(株式会社デンソー)、廣瀬 正明(株式会社デンソー)、河村 芳海(トヨタ自動車株式会社)、梶 洋隆(トヨタ自動車株式会社)、城殿 清澄(株式会社豊田中央研究所)

09:20 〜 09:40

[4P1-OS-17b-02] Data Collaboration Analysis for Distributed Datasets With Orthogonal Integration Matrices

〇Keiyu Nosaka1, Akiko Yoshise2 (1. Univ. of Tsukuba, Graduate School of Science and Technology, 2. Univ. of Tsukuba, Institute of System and Information Engineering)

キーワード:Distributed Privacy-Preserving Machine Learning, Data Collaboration Analysis, Dimension Reduction

Advancements in Machine Learning (ML) are increasingly reliant on diverse datasets. However, combining multi-source data raises ethical concerns regarding user privacy and data misuse. This is further complicated by legal frameworks, like Japan's Act on the Protection of Personal Information, impacting ML deployment. Privacy-Preserving Machine Learning (PPML) addresses these challenges by ensuring data security, thereby supporting robust ML development. A key development in this area is the Data Collaboration (DC) framework, which facilitates secure ML training by integrating dimensionally reduced Intermediate Representations (IR) from distributed data. Current implementations face challenges with IR integration, affecting model stability. Our research presents an innovative enhancement to the DC framework, employing orthogonal integration matrices for IR integration. This solution aligns with the Orthogonal Procrustes Problem, offering an established analytical solution. Empirical assessments demonstrate that our approach notably improves recognition performance, surpassing traditional DC analysis methods. This study contributes to ML technologies' ethical and efficient advancement, respecting privacy concerns while optimizing data amalgamation.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード