2024年度 人工知能学会全国大会(第38回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[4Q1-IS-2c] Machine learning

2024年5月31日(金) 09:00 〜 10:40 Q会場 (402会議室)

座長:李 吉屹(山梨大学)[[オンライン]]

10:00 〜 10:20

[4Q1-IS-2c-04] Human-Aligned Topic Model for Explanations of Image Classification

〇Jingbo Yan1,2, Seiji Yamada2,1 (1. SOKENDAI, 2. NII)

キーワード:Representation learning, Human- centered computing , Explainable AI

Despite significant research efforts to integrate human judgment to improve model interpretability, there is a continued need to enhance the efficiency of evaluation algorithms in this domain. It's important to note that human perceptions may not consistently align with dataset labels. Therefore, we developed a topic model architecture to address this discrepancy. While topic modeling is commonly associated with language models, we introduced a contrastive topic modeling approach on clustering results of human-annotated images. Semi-supervised clustering incorporates must-link constraints for similar items and cannot-link constraints for dissimilar items, which are provided by humans. Our method aligns image patches clustering with the similarity measurement between prototypes and dataset samples in the model during training. It ensures that the deep neural network, while predicting images, transfers human knowledge from a multi-semantic topic derived from the clustering result to individual samples. This process generates intrinsic global topic explanations, illuminating salient image features and capturing both positive and negative relations. Our experimental results achieve highly competitive outcomes and signify direct visual concept examples for ease of understanding.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード