2024年度 人工知能学会全国大会(第38回)

講演情報

ポスターセッション

ポスターセッション » ポスターセッション

[4Xin2] ポスターセッション2

2024年5月31日(金) 12:00 〜 13:40 X会場 (イベントホール1)

[4Xin2-108] Small Anomaly Segmentation in Autonomous Driving

〇Hang Zhang1、Weijie Chen1、Danilo Vargas1,2 (1.Kyushu University、2.The University of Tokyo)

キーワード:Anomaly Segementation, Autonomous Driving, Robustness

Identifying unfamiliar or unusual objects on the road poses a significant challenge in autonomous driving. While recent studies have achieved high accuracy in identifying anomalies of regular size, the detection of smaller objects remains a more complex problem. Here, we introduce AutoFocusAnomaly (AFA), a practical approach designed to enhance the detection of small anomalies. AFA integrates a modified version of the AutofocusFormer segmentation model with the classic uncertainty estimation function, particularly the maximum logit (i.e., the highest values among classes in the model's output). To assess the performance of the method, we take a portion of the Lost And Found (LAF) dataset to render it suitable as a new dataset called LAF Far (LAFF) for small anomaly segmentation. Results show the effectiveness of our method in anomaly segmentation. Specifically in the small anomaly segmentation task, we obtain the highest Average Precision (AP) coupled with a competitively low false positive rate, which is significantly better than State-Of-The-Art(SOTA) methods. We believe that these might shed light on future research in the domain of small anomalies segmentation.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード