2018年第65回応用物理学会春季学術講演会

講演情報

一般セッション(口頭講演)

13 半導体 » 13.5 デバイス/集積化技術

[18p-G203-1~18] 13.5 デバイス/集積化技術

2018年3月18日(日) 13:15 〜 18:00 G203 (63-203)

齋藤 真澄(東芝)、宮地 幸祐(信州大)

16:30 〜 16:45

[18p-G203-13] Impact of solid-state memristor variability on perceptron supervised learning via STDP

Radu M Berdan1、Takao Marukame1、Yoshifumi Nishi1 (1.Toshiba RDC)

キーワード:memristor, neuromorphic engineering, unsupervised learning

Neuromorphic engineering offers great promise in creating compact and power efficient non-von-Neumann computing systems capable of brain-like computation. Memristors are non-volatile memory elements which aid in achieving this goal, due to their nano-scale size and dynamics akin to biological synapses. In this paper we explore the impact of practical device variability so often reported in literature on the performance of large scale artificial neural networks trained via Spike-Timing Dependent Plasticity (STDP) on the task of hand-written digit recognition.