MMIJ Annual Meeting 2025

Presentation information (2025/02/05 Ver.)

General Session

(General session) Rock Engineering / Mining and underground construction machineries

Thu. Mar 13, 2025 9:00 AM - 11:55 AM Room-1 (Fl.3.,Build. 6. 631)

Chairperson: 武川 順一(京都大学)、濵中 晃弘(九州大学)

(Presentation: 15 minutes allotted for lecture and 5 minutes for Q&A out of 20 minutes per presentation)

10:00 AM - 10:20 AM

[2K0101-08-04] Rock Strength Identification from MWD Data Using Optimization Algorithm-Enhanced ML-modelling Approach

○BOSONG YU1[Student presentation: Doctoral course], Hideki Shimada1, Takashi Sasaoka1, Hamanaka Akihiro1, Sugeng Wahyudi2 (1. Kyushu University, 2. NITTOC Construction Co., Ltd., Tokyo, Japan)

Chairperson: 武川 順一(京都大学)

Keywords:Tunnelling, Machine learning, Rock Strength, Measurement while drilling

Accurately assessing the mechanical properties of the surrounding rock mass is crucial for ensuring safety and stability during the construction of underground tunnels. Although the use of measurement while drilling (MWD) data in tunneling projects is on the rise, further exploration of machine learning (ML) techniques for the real-time identification of geological conditions in the surrounding rock mass is still required. This paper introduces a novel ML framework for identifying the strength of drilled rock using MWD data. To assess the framework’s performance, an indoor MWD test was conducted. The study applied various ML algorithms, including the XGBoost model, to identify rock strength based on four key MWD features: torque, drilling thrust, drilling speed, and rotational speed. A selection of the most popular parameter optimization algorithms was explored to enhance the prediction accuracy of the ML models. The rock strength identification framework presented in this paper follows a rigorous scientific ML modeling process. The test results demonstrate the significant potential of using optimization-enhanced ML models for accurately identifying rock strength.

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

Password