The 2024 SSJ Fall Meeting

Presentation information

Poster session (Oct. 22nd)

Regular session » S01. Theory and analysis method

[S01P] PM-P

Tue. Oct 22, 2024 5:15 PM - 6:45 PM Room P (Main Hall (2F))

[S01P-11] An approach for quantifying seismicity rate by spatial partitioning based on epicenter locations - Case study using Delaunay triangulation

*Kohei NAGATA1 (1. Meteorological Collage)

地震活動をモニタリングし通常と異なる活動を検知するためには、普段の地震活動の特徴をそのばらつきも含めて定量化することが有効である(例えば Nagata et al, 2022)。地震活動度は一定期間に一定面積で発生する地震発生回数として定義することができ分かりやすい量であるが、主として地震は一般に余震を伴う(時空間的に群れる)性質があることにより、その客観的な定量化には困難が伴う。地震活動のモニタリングの観点からは、時空間範囲やモデル設定等の恣意的な要素をできるだけ排除した形で地震活動度を一定の手法により定量化して指標とし、その変化を捉えることができる手法を確立することが一つの課題であると言えよう。

震央分布から直接的に地震活動度を推定する手法の最もシンプルな手法の一つとして最近傍点探索法が挙げられる。一定期間中の地震の発生確率 λ(単位は例えば、回/day/km2) が一定で空間的に一様である場合には、地表の任意の一点から最も近い震央までの距離の確率密度分布は、0.5 λ -1/2 を期待値とするレイリー分布となることがよく知られている(宇津, 1999)。この性質を用いれば、一定期間中のほぼ一様な地震活動についてはその震央分布の中の任意の点からの最近傍点距離で特徴づけることは可能であるが、実際にはλ は空間的に一様ではなく、1パラメータのレイリー分布で地震活動度を表現するのは無理がある。

本発表では、最近傍点探索法による1次元的な情報に加え、震央分布に基づく空間分割により直接的に地震活動度を推定した結果を報告する。客観的な空間分割手法として今回はDelaunay三角形分割を用いる。一定期間中のλ が一定で空間的に一様である場合には、地表の任意の一点を含むDelaunay三角形の面積の確率密度分布は、形状パラメータkと尺度パラメータθの2パラメータで表されるガンマ分布に従うことが数値計算により確認された。この場合のkは2.2〜2.5程度になる。kとθの積が一定期間に発生する地震の震央によるDelaunay三角形の面積の期待値であり、1/λに概ね対応する(値は1/λよりもやや小さく9割程度)。

この手法を気象庁一元化震源カタログによる2016年4月から8年間の和歌山県北部及び銚子沖の比較的定常的な地震活動に適用したところ、活動が活発な領域では1日ごとの震央分布から計算されるDelaunay三角形の面積の確率密度分布はやはりガンマ分布で表されることが分かった。ただし、形状パラメータkの値は1.7程度とλ が一定で空間的に一様である場合とはその分布の形状が有意に異なることが分かった。これは、当然ながら実際の地震活動には余震が含まれるためと考えられる。しかしながらその活動度には地域差があり、その大小はガンマ分布の尺度パラメータで特徴づけられることも分かる。活動が比較的低調な領域では、1日ごとの震央分布から計算されるDelaunay三角形の面積の確率密度分布は明瞭なピークを持たないなど歪な形状となる。これは設定した期間が、その地点の地震活動度を表現するには短すぎたためと考えられる。この場合には、期間を延ばすことによりガンマ分布で表される面積の確立密度分布を得ることができた。

震央分布を抽出する期間の設定方法は本手法で唯一恣意的な設定の余地が残る部分であり重要な課題と言えるが、結果として得られる分布の形状が一つの目安となるかもしれない。なお、Delaunay三角形の面積の確率密度分布がガンマ分布となる場合には、最近傍点探索法により最近傍点までの距離の分布はレイリー分布で表されることも分かった。この距離の分布単独での情報量はそれほど多くないが、補助的な情報として活用できる可能性がある。震央分布に基づく空間分割に関しては他にも方法があり、今後そのような手法についても検討を進めることにより、地震活動のモニタリング手法の高度化につながることが期待される。

参考文献:
  宇津徳治(1999).『地震活動総説』, 東京大学出版会, 東京.
  Nagata, K., Tamaribuchi, K., Hirose, F. and Noda, A. (2022). Statistical study on the regional characteristics of seismic activity in and around Japan: frequency-magnitude distribution and tidal correlation. Earth Planets Space 74, 179. https://doi.org/10.1186/s40623-022-01722-2