9:55 AM - 10:15 AM
[3101-06-02] Temperature estimation at the Kakkonda geothermal field based on resistivity data using artificial neural network
Chairman: Akihisa Kizaki (Akita university)
Keywords:Temperature estimation, Neural network, Geothermal development, Resistivity, the Kakkonda geothermal field
It is well known that temperature estimation beneath a geothermal development area is important. Recently, Spichak et al. have proposed a method to estimate temperature distribution based on resistivity data estimated by MT measurements. This method constructs a neural network model that connects resistivity and temperature data at well locations, and estimates temperature distribution at other areas based on resistivity data. We examined the applicability of this method through the application to the Kakkonda geothermal field. We estimated the temperature at a deeper part of the geothermal field with the accuracy of 38 % by tuning a neural network model and training data. This results demonstrate the effectiveness of the method.
講演PDFファイルダウンロードパスワード認証
講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。
現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)
[資源・素材学会会員専用パスワード]を入力してください